Iteration-Complexity of a Newton Proximal Extragradient Method for Monotone Variational Inequalities and Inclusion Problems
نویسندگان
چکیده
In a recent paper by Monteiro and Svaiter, a hybrid proximal extragradient (HPE) framework was used to study the iteration-complexity of a first-order (or, in the context of optimization, second-order) method for solving monotone nonlinear equations. The purpose of this paper is to extend this analysis to study a prox-type first-order method for monotone smooth variational inequalities and inclusion problems consisting of the sum of a smooth monotone map and a maximal monotone point-to-set operator. Each iteration of the method computes an approximate solution of a proximal subproblem obtained by linearizing the smooth part of the operator in the corresponding proximal equation for the original problem, which is then used to perform an extragradient step as prescribed by the HPE framework. Both pointwise and ergodic iteration-complexity results are derived for the aforementioned first-order method using corresponding results obtained here for a subfamily of the HPE framework.
منابع مشابه
A Hybrid Proximal Extragradient Self-Concordant Primal Barrier Method for Monotone Variational Inequalities
In this paper we present a primal interior-point hybrid proximal extragradient (HPE) method for solving a monotone variational inequality over a closed convex set endowed with a selfconcordant barrier and whose underlying map has Lipschitz continuous derivative. In contrast to the method of [7] in which each iteration required an approximate solution of a linearized variational inequality over ...
متن کاملOn the Complexity of the Hybrid Proximal Extragradient Method for the Iterates and the Ergodic Mean
In this paper we analyze the iteration-complexity of the hybrid proximal extragradient (HPE) method for finding a zero of a maximal monotone operator recently proposed by Solodov and Svaiter. One of the key points of our analysis is the use of a new termination criteria based on the εenlargement of a maximal monotone operator. The advantages of using this termination criterion it that its defin...
متن کاملA Relaxed Extra Gradient Approximation Method of Two Inverse-Strongly Monotone Mappings for a General System of Variational Inequalities, Fixed Point and Equilibrium Problems
متن کامل
An Approximate Proximal Point Algorithm for Maximal Monotone Inclusion Problems
This paper presents and analyzes a strongly convergent approximate proximal point algorithm for finding zeros of maximal monotone operators in Hilbert spaces. The proposed method combines the proximal subproblem with a more general correction step which takes advantage of more information on the existing iterations. As applications, convex programming problems and generalized variational inequa...
متن کاملRegularized HPE-Type Methods for Solving Monotone Inclusions with Improved Pointwise Iteration-Complexity Bounds
This paper studies the iteration-complexity of new regularized hybrid proximal extragradient (HPE)-type methods for solving monotone inclusion problems (MIPs). The new (regularized HPE-type) methods essentially consist of instances of the standard HPE method applied to regularizations of the original MIP. It is shown that its pointwise iteration-complexity considerably improves the one of the H...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 22 شماره
صفحات -
تاریخ انتشار 2012